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A Definition of Stateless
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State

● It is the information present on the system at any given 
moment.

● For an OS, state is the files or in a higher-level - the 
packages and their configuration.

● Examples include our conventional operating systems like 
Debian, Ubuntu etc.
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Stateless

● Stateless OS can be deployed and run such that the host OS 
and the applications running in it are completely 
independent of each other.

● In such systems, the root directory is often read-only.
● There will be a selected list of directories, mostly, /var, 
/etc, /tmp to write data.



Ecosystem of Stateless
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Immutability

● An immutable OS doesn't allow any changes.
● Either the OS can make its file system completely read-only.
● Or the changes made is lost on reboot.
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Declarative

● It is the recipe to make the system we need.
● It contains the list of packages, their version and preferably 

checksum.
● It can used by anyone to create the same environment.
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Reproducible

● If a declaration can be used to create bit-bit equivalent 
systems, then the declaration is 100% reproducible.

● It allows us to verify whether a different source code was 
used to build a software.



9

Isolation

● It tells us whether an app A can modify an other app B 
without B's knowledge.

● Sometimes, the isolation is kept only between host and the 
user.
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Self Contained

● It is a measure of how much an app depends on the host for 
its dependencies.

● Impossible to get 100% but combined with declarative and 
100% reproducible environment, we can attain an optimal 
value.



11

Snapshot

● It is the image of a file system at a particular moment in 
time.

● Ideally, snapshot should be made whenever the file system 
is modified.

● Snapshots allow us to revert back destructive changes.
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Atomicity

● The principle of atomicity states that an update is either 
successfully complete or an utter failure.

● It means, the system is never left in a broken state, no 
matter what catastrophe happens.



Issues in Stateless
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Security

● Stateless allows $HOME, /tmp etc. to be read-write.
● Nothing prevents a malicious or buggy app from stealing 

data like SSH keys.
● Hence, no security, unless otherwise configured.
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Disk Usage

● Frequent changes results in eating up of disk space by 
snapshots.

● Reproducibility might have to build every dependency from 
source. This takes up a good amount of space.

● However, sharing of libraries can help.
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Bandwidth

● Downloading dependencies can consume a lot of 
bandwidth.

● On production systems, with same setup in each system, a 
local mirror can be used.
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Build Time

● Building every dependency delays setup.
● A centralized build system can be used to cache and speed-

up the process.



Usage Perspective
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Developer

● A declarative system allows us to pin-point the exact 
version of every single package required.

● With 100% reproducibility, we can ensure that every 
developer has the same development environment.

● This ideally solves the “it works on my computer” problem.
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System Administrator

● A declarative configuration allows us to deploy an 
application in an automated manner.

● Vulnerabilities can be tracked for every dependency easily.
● Replication of a setup across multiple system gets more 

convenient.
● Snapshots lets us rollback buggy configurations with less 

hassle.
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Normal User

● Atomicity and snapshots are useful features in home 
machines where crashes in terms of hardware and power is 
unavoidable.

● Declarative approach allows easy installation with less 
manual intervention.

● Users can match the exact requirements of an application, 
which solves the issue of “library version mismatch”.



Inspiration & Existing Technology
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Libostree

● Formerly known as OSTree.
● It is a system for versioning updates.
● It is Git for operating system binaries.
● libostree is a library which can be used the underlying 

host to version and deploy the changes.
● It is used by endless OS, Flatpak, Fedora's immutable spins 

etc.
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Libostree – Overview

● Create a new repository.
● Make changes to the OS.
● Use OSTree to commit it.
● Deploy the new commit.
● Revert back if needed.
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Libostree – Getting Started 

● Install ostree
$ sudo apt install ostree

● Initialize a repository repo in current working directory.
$ ostree init --repo=repo

● Create work tree.
$ mkdir tree
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Libostree – Getting Started

● Make some changes.
$ mkdir tree/server

$ echo “python3 -m http.server” > 
tree/server/app.sh

● Commit to branch main.
$ ostree --repo=repo commit --branch=main --
subject="Created server" tree/

5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d082
86a2e846f6be03
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Libostree – Getting Started

● Make changes to changes.
$ printf "echo 'Running'\npython3 -m 
http.server\n" > tree/server/app.sh

● Commit the changes.
$ ostree --repo=repo commit --branch=main --
subject="Added logging" tree/

9b75290f6a6359a2a3471022cbba4b724e45105b313ae8f6
c103a2f79e82a857
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Libostree – Getting Started

● Show the log of commits.
commit 9b75290f6a6359a2a3471022cbba4b724e45105b313ae8f6c103a2f79e82a857

Parent: 5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f6be03

ContentChecksum: 
4ad28e4a6461bd64b920f72f86c0d16edc544c4a1f26060518ebb900025d496a

Date: 2023-09-07 07:16:57 +0000

    Added logging

commit 5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f6be03

ContentChecksum: 
e1aef671f29c63c748142b89d3657ad8a28f3ceffdd545c08dc2f4479aa4ac7b

Date: 2023-09-07 07:15:20 +0000

    Created server
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Libostree – Getting Started

● List the files in main.
$ ostree --repo=repo ls main

d00755 1000 1000    0 /

d00755 1000 1000    0 /server
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Libostree – Getting Started

● View the files in main or a commit.
$ ostree --repo=repo cat main server/app.sh

echo 'Running'

python3 -m http.server

$ ostree --repo=repo cat 9b752 server/app.sh

echo 'Running'

python3 -m http.server

$ ostree --repo=repo cat 5891b server/app.sh

python3 -m http.server
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Libostree – Getting Started

● Make some errors.
$ printf "echo 'Running'\npython3 -m 
http.server\n" > tree/server/app.sh

$ ostree --repo=repo commit --branch=main --
subject="Updated to FTP" tree/

39f786f06974701a78fe2888b843cdf653c1f9f730600fb5
d2409594d52ae791
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Libostree – Getting Started

● Check the logs.
$ ostree --repo=repo log main

commit 39f786f06974701a78fe2888b843cdf653c1f9f730600fb5d2409594d52ae791

Parent: 9b75290f6a6359a2a3471022cbba4b724e45105b313ae8f6c103a2f79e82a857

ContentChecksum: ccde54526baba3c41591202a27b3d37001bcbdffa03cfbe5214e4685c70ad869

Date: 2023-09-07 07:18:15 +0000

    Updated to FTP

commit 9b75290f6a6359a2a3471022cbba4b724e45105b313ae8f6c103a2f79e82a857

Parent: 5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f6be03

ContentChecksum: 4ad28e4a6461bd64b920f72f86c0d16edc544c4a1f26060518ebb900025d496a

Date: 2023-09-07 07:16:57 +0000

    Added logging

commit 5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f6be03

ContentChecksum: e1aef671f29c63c748142b89d3657ad8a28f3ceffdd545c08dc2f4479aa4ac7b

Date: 2023-09-07 07:15:20 +0000

    Created server
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Libostree – Getting Started

● Rollback to a commit.
$ ostree --repo=repo reset main 9b752

$ ostree --repo=repo log main

commit 9b75290f6a6359a2a3471022cbba4b724e45105b313ae8f6c103a2f79e82a857

Parent: 5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f6be03

ContentChecksum: 4ad28e4a6461bd64b920f72f86c0d16edc544c4a1f26060518ebb900025d496a

Date: 2023-09-07 07:16:57 +0000

    Added logging

commit 5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f6be03

ContentChecksum: e1aef671f29c63c748142b89d3657ad8a28f3ceffdd545c08dc2f4479aa4ac7b

Date: 2023-09-07 07:15:20 +0000

    Created server
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Libostree – Getting Started

● Deploy the rollback
$ cat tree/server/app.sh # Before

echo 'Running'

python3 -m ftp.server

$ ostree --repo=repo checkout --union 9b752 tree/

$ cat tree/server/app.sh # After

echo 'Running'

python3 -m http.server
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Libostree – Getting Started

● Pack a commit into an archive.
$ ostree --repo=repo export main > main.tar.gz

$ tar --list --file=main.tar.gz

./

server/

server/app.sh
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Libostree – Merits

● It is designed for the purpose of immutability.
● Similarity to Git, making it easy to adapt.
● Contains built-in functions to help in majority of the use 

cases.
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Libostree - Demerits

● Not meant for direct end-user usage.
● Lack of much documentation or help outside the official 

ones.
● Needs non-trivial changes for usage.
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Fedora Silverblue (rpm-ostree)

● rpm-ostree is a hybrid image and package system. 
● It combines libostree as a base image format, and uses RPM 

for packages.
● Fedora Silverblue is an immutable variant of Fedora 

Workstation using rpm-ostree.
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Fedora Silverblue – Overview

● Fedora Silverblue supports three ways of installing 
software.

● Flatpak – For GUI apps.
● Toolbox – For CLI and development apps.
● Package layering – For core-level packages like drivers etc.
● Each update of the OS creates an entry in boot-loader.
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Fedora Silverblue – Getting Started

● Update the OS.
$ rpm-ostree upgrade

● Temporary rollback.
Boot the previous version from boot-loader menu.

● Permanent rollback to previous version.
$ rpm-ostree rollback



41

Fedora Silverblue – Merits

● Complete abstraction from libostree.
● Easy to get started and use thanks to GUI and simple 

commands.
● All the other advantages of libostree.
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Fedora Silverblue – Demerits

● Setting up of development environment can be difficult.
● Packages needs to modified to work with the new 

restrictions.
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Nix

● Nix is a purely functional package manager
● It helps you make sure that package dependency 

specifications are complete.
● When installing a package, Nix calculates a unique hash to 

store it in /nix/store.
● The risk of incomplete dependencies are greatly reduced.
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Nix – Installation

● Multi-user installation
$ sh < (curl -L https://nixos.org/nix/install) 
--daemon

● Single user installation
$ sh < (curl -L https://nixos.org/nix/install) 
--no-daemon
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Nix – Overview

● Prepare a declaration.
● Spin up the environment
● Update the declaration.
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Nix – Install a Package

● Invoking nix-env. 
$ nix-env --install python3

● Check the installed package.
$ command -V python3

/nix/store/jhflvwr40xbb0xr6jx4311icp9cym1fp-
python3-3.10.12/bin/python3.10
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Nix – Uninstall a Package

● Query the installed packages.
$ nix-env --query

python3

● Uninstall python3.
$ nix-env --uninstall python3
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Nix – Switch Generations

● Install another package.
nix-env --install tree

● List the generations.
$ nix-env --list-generations

1   2023-09-05 22:55:58

2   2023-09-05 23:02:11 (current)

● Switch to the previous generation.
$ nix-env –switch-generation=1

$ tree

command not found: tree
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Nix – Ad-hoc Environment

● Make a temporary development environment.
$ nix-shell -p python3

● Nix creates an isolated environment where declared 
packages are available.
$ python3 -c "print('hello')"

hello
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Nix – Reproducible Environment

$ cat shell.nix

{ pkgs ? import (fetchTarball 
"https://github.com/NixOS/nixpkgs/archive/06278c77
b5d162e62df170fec307e83f1812d94b.tar.gz") {}}:

pkgs.mkShell {

    packages = [

    (pkgs.python3.withPackages (ps: [ps.flask]))

    pkgs.curl

];}
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GNU Guix

● Guix implements the functional package management 
discipline pioneered by Nix.

● Advantage over Nix is that built packages can be used in 
the environment where Guix is not installed.

● But Guix requires knowledge about Scheme to write 
package definitions
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Guix – Getting started

● Installation
$ sudo apt install guix

● Create an Ad-hoc development environment
$ guix shell python3

$ command -v python

/gnu/store/66qalq2h24ax12vp059fdjjahcmqp1pz-
python-3.10.7/bin/python3
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Guix – Ad-hoc Environment

● Lets create an Ad-hoc Environment
$ guix shell python python-numpy

$ python

>>> import numpy as np

>>> np.__version__

'1.24.2'
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Guix – Packaging application

● Packages can be built to use in the environment where guix 
is not available.

● Invoking guix pack
$ guix pack hello

$ guix pack -RR -S /mybin/hello=bin hello

$ ./mybin/hello

Hello, world!
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Guix – Package a deb archive

● Guix have builtin support for packaging the application in deb and rpm 
format.

● To produce a Debian archive containing all the specified binaries and 
symbolic links, that can be installed on top of any dpkg-based 
GNU(/Linux) distribution. 
$ guix pack -f deb -C xz -S /usr/bin/hello=bin/hello hello

$ sudo dpkg -i bpbpflc42jwryfrjpkqix3vnm8cdbmnr-hello-deb-
pack.deb

$ hello

Hello, World!



But chroot
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chroot

● Is not a solution.
● For this to work, we have to make a minimal environment 

with at least bash, apt etc.
● It is a tedious task, though debootstrap can help.
● But versioning, rollback has to be manually implemented.



Thought Experiment

How An Immutable Debian Could Be Like?
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A Different apt

● apt could support installation of packages to a user’s 
specific directory.
$ apt install --dir=foo python3

● Combined with direnv, these packages are loaded only 
inside the directory.

● This can give an ad-hoc environment to test around 
packages without polluting global packages.
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Snapshots in apt

● Every change in packages can result in a new snapshot.
● These snapshots could be added to boot-loader, so users 

can move to a previous one if needed.
● However, libostree like library might be needed at some 

point for compression, differential storage etc.



Allow Us To Introduce Ourselves

BTRFS, Flatpak, Containers and Co.
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BTRFS

● Btrfs is a file system based on the copy-on-write (COW) 
principle with a logical volume manager.

● It has support for subvolumes with different properties like 
permissions and quota.

● Snapshots can be made of subvolumes.
● CoW ensures that we can rollback changes made to a file.
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Flatpak

● Built on top of libostree. 
● Applications that are installed is stored in a local version 

control repository, and is then mapped into the local file 
system.

● Applications runs in a sandbox without affecting the host 
environment.



64

Containers

● Containers made through Docker, Podman etc. create a 
light-weight virtual machines.

● They can be used to create environments that work the 
same irrespective of the host.

● Containers allow commit, which is similar to pausing and 
resuming it any required instant.



How Do I Start?
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Development

● We can use Nix and GNU Guix for isolated development 
environments, which solves many dependency problems.

● Nix and GNU Guix allow reproducible environments that 
makes sure everyone gets the same packages.

● Declarative package management lets easy tracking of 
versions.



67

Deployment

● Apps can be deployed as containers.
● This way we keep the packages installed on Debian 

minimal.
● This way we ensure that the dependencies for every app is 

self-contained.
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Conclusion

● This talk worked on our computer.
● No Debian packages were hurt in making this presentation.
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THANK YOU
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