
State of Stateless

A Talk About Immutability in Debian

Arun Mani J & Ragul R

A Definition of Stateless

3

State

● It is the information present on the system at any given
moment.

● For an OS, state is the files or in a higher-level - the
packages and their configuration.

● Examples include our conventional operating systems like
Debian, Ubuntu etc.

4

Stateless

● Stateless OS can be deployed and run such that the host OS
and the applications running in it are completely
independent of each other.

● In such systems, the root directory is often read-only.
● There will be a selected list of directories, mostly, /var,
/etc, /tmp to write data.

Ecosystem of Stateless

6

Immutability

● An immutable OS doesn't allow any changes.
● Either the OS can make its file system completely read-only.
● Or the changes made is lost on reboot.

7

Declarative

● It is the recipe to make the system we need.
● It contains the list of packages, their version and preferably

checksum.
● It can used by anyone to create the same environment.

8

Reproducible

● If a declaration can be used to create bit-bit equivalent
systems, then the declaration is 100% reproducible.

● It allows us to verify whether a different source code was
used to build a software.

9

Isolation

● It tells us whether an app A can modify an other app B
without B's knowledge.

● Sometimes, the isolation is kept only between host and the
user.

10

Self Contained

● It is a measure of how much an app depends on the host for
its dependencies.

● Impossible to get 100% but combined with declarative and
100% reproducible environment, we can attain an optimal
value.

11

Snapshot

● It is the image of a file system at a particular moment in
time.

● Ideally, snapshot should be made whenever the file system
is modified.

● Snapshots allow us to revert back destructive changes.

12

Atomicity

● The principle of atomicity states that an update is either
successfully complete or an utter failure.

● It means, the system is never left in a broken state, no
matter what catastrophe happens.

Issues in Stateless

14

Security

● Stateless allows $HOME, /tmp etc. to be read-write.
● Nothing prevents a malicious or buggy app from stealing

data like SSH keys.
● Hence, no security, unless otherwise configured.

15

Disk Usage

● Frequent changes results in eating up of disk space by
snapshots.

● Reproducibility might have to build every dependency from
source. This takes up a good amount of space.

● However, sharing of libraries can help.

16

Bandwidth

● Downloading dependencies can consume a lot of
bandwidth.

● On production systems, with same setup in each system, a
local mirror can be used.

17

Build Time

● Building every dependency delays setup.
● A centralized build system can be used to cache and speed-

up the process.

Usage Perspective

19

Developer

● A declarative system allows us to pin-point the exact
version of every single package required.

● With 100% reproducibility, we can ensure that every
developer has the same development environment.

● This ideally solves the “it works on my computer” problem.

20

System Administrator

● A declarative configuration allows us to deploy an
application in an automated manner.

● Vulnerabilities can be tracked for every dependency easily.
● Replication of a setup across multiple system gets more

convenient.
● Snapshots lets us rollback buggy configurations with less

hassle.

21

Normal User

● Atomicity and snapshots are useful features in home
machines where crashes in terms of hardware and power is
unavoidable.

● Declarative approach allows easy installation with less
manual intervention.

● Users can match the exact requirements of an application,
which solves the issue of “library version mismatch”.

Inspiration & Existing Technology

23

Libostree

● Formerly known as OSTree.
● It is a system for versioning updates.
● It is Git for operating system binaries.
● libostree is a library which can be used the underlying

host to version and deploy the changes.
● It is used by endless OS, Flatpak, Fedora's immutable spins

etc.

24

Libostree – Overview

● Create a new repository.
● Make changes to the OS.
● Use OSTree to commit it.
● Deploy the new commit.
● Revert back if needed.

25

Libostree – Getting Started

● Install ostree
$ sudo apt install ostree

● Initialize a repository repo in current working directory.
$ ostree init --repo=repo

● Create work tree.
$ mkdir tree

26

Libostree – Getting Started

● Make some changes.
$ mkdir tree/server

$ echo “python3 -m http.server” >
tree/server/app.sh

● Commit to branch main.
$ ostree --repo=repo commit --branch=main --
subject="Created server" tree/

5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d082
86a2e846f6be03

27

Libostree – Getting Started

● Make changes to changes.
$ printf "echo 'Running'\npython3 -m
http.server\n" > tree/server/app.sh

● Commit the changes.
$ ostree --repo=repo commit --branch=main --
subject="Added logging" tree/

9b75290f6a6359a2a3471022cbba4b724e45105b313ae8f6
c103a2f79e82a857

28

Libostree – Getting Started

● Show the log of commits.
commit 9b75290f6a6359a2a3471022cbba4b724e45105b313ae8f6c103a2f79e82a857

Parent: 5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f6be03

ContentChecksum:
4ad28e4a6461bd64b920f72f86c0d16edc544c4a1f26060518ebb900025d496a

Date: 2023-09-07 07:16:57 +0000

 Added logging

commit 5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f6be03

ContentChecksum:
e1aef671f29c63c748142b89d3657ad8a28f3ceffdd545c08dc2f4479aa4ac7b

Date: 2023-09-07 07:15:20 +0000

 Created server

29

Libostree – Getting Started

● List the files in main.
$ ostree --repo=repo ls main

d00755 1000 1000 0 /

d00755 1000 1000 0 /server

30

Libostree – Getting Started

● View the files in main or a commit.
$ ostree --repo=repo cat main server/app.sh

echo 'Running'

python3 -m http.server

$ ostree --repo=repo cat 9b752 server/app.sh

echo 'Running'

python3 -m http.server

$ ostree --repo=repo cat 5891b server/app.sh

python3 -m http.server

31

Libostree – Getting Started

● Make some errors.
$ printf "echo 'Running'\npython3 -m
http.server\n" > tree/server/app.sh

$ ostree --repo=repo commit --branch=main --
subject="Updated to FTP" tree/

39f786f06974701a78fe2888b843cdf653c1f9f730600fb5
d2409594d52ae791

32

Libostree – Getting Started

● Check the logs.
$ ostree --repo=repo log main

commit 39f786f06974701a78fe2888b843cdf653c1f9f730600fb5d2409594d52ae791

Parent: 9b75290f6a6359a2a3471022cbba4b724e45105b313ae8f6c103a2f79e82a857

ContentChecksum: ccde54526baba3c41591202a27b3d37001bcbdffa03cfbe5214e4685c70ad869

Date: 2023-09-07 07:18:15 +0000

 Updated to FTP

commit 9b75290f6a6359a2a3471022cbba4b724e45105b313ae8f6c103a2f79e82a857

Parent: 5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f6be03

ContentChecksum: 4ad28e4a6461bd64b920f72f86c0d16edc544c4a1f26060518ebb900025d496a

Date: 2023-09-07 07:16:57 +0000

 Added logging

commit 5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f6be03

ContentChecksum: e1aef671f29c63c748142b89d3657ad8a28f3ceffdd545c08dc2f4479aa4ac7b

Date: 2023-09-07 07:15:20 +0000

 Created server

33

Libostree – Getting Started

● Rollback to a commit.
$ ostree --repo=repo reset main 9b752

$ ostree --repo=repo log main

commit 9b75290f6a6359a2a3471022cbba4b724e45105b313ae8f6c103a2f79e82a857

Parent: 5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f6be03

ContentChecksum: 4ad28e4a6461bd64b920f72f86c0d16edc544c4a1f26060518ebb900025d496a

Date: 2023-09-07 07:16:57 +0000

 Added logging

commit 5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f6be03

ContentChecksum: e1aef671f29c63c748142b89d3657ad8a28f3ceffdd545c08dc2f4479aa4ac7b

Date: 2023-09-07 07:15:20 +0000

 Created server

34

Libostree – Getting Started

● Deploy the rollback
$ cat tree/server/app.sh # Before

echo 'Running'

python3 -m ftp.server

$ ostree --repo=repo checkout --union 9b752 tree/

$ cat tree/server/app.sh # After

echo 'Running'

python3 -m http.server

35

Libostree – Getting Started

● Pack a commit into an archive.
$ ostree --repo=repo export main > main.tar.gz

$ tar --list --file=main.tar.gz

./

server/

server/app.sh

36

Libostree – Merits

● It is designed for the purpose of immutability.
● Similarity to Git, making it easy to adapt.
● Contains built-in functions to help in majority of the use

cases.

37

Libostree - Demerits

● Not meant for direct end-user usage.
● Lack of much documentation or help outside the official

ones.
● Needs non-trivial changes for usage.

38

Fedora Silverblue (rpm-ostree)

● rpm-ostree is a hybrid image and package system.
● It combines libostree as a base image format, and uses RPM

for packages.
● Fedora Silverblue is an immutable variant of Fedora

Workstation using rpm-ostree.

39

Fedora Silverblue – Overview

● Fedora Silverblue supports three ways of installing
software.

● Flatpak – For GUI apps.
● Toolbox – For CLI and development apps.
● Package layering – For core-level packages like drivers etc.
● Each update of the OS creates an entry in boot-loader.

40

Fedora Silverblue – Getting Started

● Update the OS.
$ rpm-ostree upgrade

● Temporary rollback.
Boot the previous version from boot-loader menu.

● Permanent rollback to previous version.
$ rpm-ostree rollback

41

Fedora Silverblue – Merits

● Complete abstraction from libostree.
● Easy to get started and use thanks to GUI and simple

commands.
● All the other advantages of libostree.

42

Fedora Silverblue – Demerits

● Setting up of development environment can be difficult.
● Packages needs to modified to work with the new

restrictions.

43

Nix

● Nix is a purely functional package manager
● It helps you make sure that package dependency

specifications are complete.
● When installing a package, Nix calculates a unique hash to

store it in /nix/store.
● The risk of incomplete dependencies are greatly reduced.

44

Nix – Installation

● Multi-user installation
$ sh < (curl -L https://nixos.org/nix/install)
--daemon

● Single user installation
$ sh < (curl -L https://nixos.org/nix/install)
--no-daemon

45

Nix – Overview

● Prepare a declaration.
● Spin up the environment
● Update the declaration.

46

Nix – Install a Package

● Invoking nix-env.
$ nix-env --install python3

● Check the installed package.
$ command -V python3

/nix/store/jhflvwr40xbb0xr6jx4311icp9cym1fp-
python3-3.10.12/bin/python3.10

47

Nix – Uninstall a Package

● Query the installed packages.
$ nix-env --query

python3

● Uninstall python3.
$ nix-env --uninstall python3

48

Nix – Switch Generations

● Install another package.
nix-env --install tree

● List the generations.
$ nix-env --list-generations

1 2023-09-05 22:55:58

2 2023-09-05 23:02:11 (current)

● Switch to the previous generation.
$ nix-env –switch-generation=1

$ tree

command not found: tree

49

Nix – Ad-hoc Environment

● Make a temporary development environment.
$ nix-shell -p python3

● Nix creates an isolated environment where declared
packages are available.
$ python3 -c "print('hello')"

hello

50

Nix – Reproducible Environment

$ cat shell.nix

{ pkgs ? import (fetchTarball
"https://github.com/NixOS/nixpkgs/archive/06278c77
b5d162e62df170fec307e83f1812d94b.tar.gz") {}}:

pkgs.mkShell {

 packages = [

 (pkgs.python3.withPackages (ps: [ps.flask]))

 pkgs.curl

];}

51

GNU Guix

● Guix implements the functional package management
discipline pioneered by Nix.

● Advantage over Nix is that built packages can be used in
the environment where Guix is not installed.

● But Guix requires knowledge about Scheme to write
package definitions

52

Guix – Getting started

● Installation
$ sudo apt install guix

● Create an Ad-hoc development environment
$ guix shell python3

$ command -v python

/gnu/store/66qalq2h24ax12vp059fdjjahcmqp1pz-
python-3.10.7/bin/python3

53

Guix – Ad-hoc Environment

● Lets create an Ad-hoc Environment
$ guix shell python python-numpy

$ python

>>> import numpy as np

>>> np.__version__

'1.24.2'

54

Guix – Packaging application

● Packages can be built to use in the environment where guix
is not available.

● Invoking guix pack
$ guix pack hello

$ guix pack -RR -S /mybin/hello=bin hello

$./mybin/hello

Hello, world!

55

Guix – Package a deb archive

● Guix have builtin support for packaging the application in deb and rpm
format.

● To produce a Debian archive containing all the specified binaries and
symbolic links, that can be installed on top of any dpkg-based
GNU(/Linux) distribution.
$ guix pack -f deb -C xz -S /usr/bin/hello=bin/hello hello

$ sudo dpkg -i bpbpflc42jwryfrjpkqix3vnm8cdbmnr-hello-deb-
pack.deb

$ hello

Hello, World!

But chroot

57

chroot

● Is not a solution.
● For this to work, we have to make a minimal environment

with at least bash, apt etc.
● It is a tedious task, though debootstrap can help.
● But versioning, rollback has to be manually implemented.

Thought Experiment

How An Immutable Debian Could Be Like?

59

A Different apt

● apt could support installation of packages to a user’s
specific directory.
$ apt install --dir=foo python3

● Combined with direnv, these packages are loaded only
inside the directory.

● This can give an ad-hoc environment to test around
packages without polluting global packages.

60

Snapshots in apt

● Every change in packages can result in a new snapshot.
● These snapshots could be added to boot-loader, so users

can move to a previous one if needed.
● However, libostree like library might be needed at some

point for compression, differential storage etc.

Allow Us To Introduce Ourselves

BTRFS, Flatpak, Containers and Co.

62

BTRFS

● Btrfs is a file system based on the copy-on-write (COW)
principle with a logical volume manager.

● It has support for subvolumes with different properties like
permissions and quota.

● Snapshots can be made of subvolumes.
● CoW ensures that we can rollback changes made to a file.

63

Flatpak

● Built on top of libostree.
● Applications that are installed is stored in a local version

control repository, and is then mapped into the local file
system.

● Applications runs in a sandbox without affecting the host
environment.

64

Containers

● Containers made through Docker, Podman etc. create a
light-weight virtual machines.

● They can be used to create environments that work the
same irrespective of the host.

● Containers allow commit, which is similar to pausing and
resuming it any required instant.

How Do I Start?

66

Development

● We can use Nix and GNU Guix for isolated development
environments, which solves many dependency problems.

● Nix and GNU Guix allow reproducible environments that
makes sure everyone gets the same packages.

● Declarative package management lets easy tracking of
versions.

67

Deployment

● Apps can be deployed as containers.
● This way we keep the packages installed on Debian

minimal.
● This way we ensure that the dependencies for every app is

self-contained.

68

Conclusion

● This talk worked on our computer.
● No Debian packages were hurt in making this presentation.

69

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

